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Abstract

Large Language Models (LLMs) suffer from critical reasoning gaps, including a tendency to hal-
lucinate and poor accuracy in classifying logical fallacies. This limitation stems from their default
System 1 processing, which is fast and intuitive, whereas reliable reasoning requires the deliber-
ate, effortful System 2 approach (Kahneman, 2011; Li et al., 2025). Since full System 2 training
is often prohibitively expensive, we explore a low-cost, instruction-based intervention to bridge
this gap. Our methodology introduces a novel stepwise instruction dataset that decomposes fal-
lacy classification into a series of atomic procedural steps (simple binary questions). We further
augment this with a final verification step where models consult a relational knowledge graph of
related fallacies. This procedural, rule-based intervention yields a significant improvement in LLM
logical fallacy classification. Crucially, the approach also provides enhanced transparency into
the LLMs’ decision-making, highlighting a practical pathway for Neuro-symbolic architectures to
address LLLM reasoning deficits.

1. Introduction

The emergence of Large Language Models (LLMs) has brought both challenges and opportunities.
While LLMs demonstrate remarkable capabilities, they are susceptible to producing various forms
of flawed output, including hallucinations and reasoning containing logical fallacies (Hong et al.,
2023, 2024; Liu et al., 2023; Pan et al., 2023). Logical fallacies are a specific class of errors that can
make an argument invalid or deceptive due to a flaw in the structure or reasoning of an argument.
For example, "Accent Fallacy" can fundamentally alter the meaning and implications of a statement
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through the strategic manipulation of word emphasis. Encouragingly, the reasoning and learning
abilities of LLMs have also shown significant potential in detecting hallucinations. (Kumar et al.,
2024) However, compared to factual errors, logical fallacies are more subtle; therefore, a more
detailed and careful design is required to detect these incorrect patterns of reasoning. For example,
research by Hong et al. shows that passing the definition of logical fallacies does not significantly
improve the ability to detect logical fallacies. (Hong et al., 2024) Similarly, research has shown
that LL.Ms have difficulty detecting specific types of logical fallacies, especially informal fallacies.
(Hong et al., 2024) The capacity for LLMs to detect and classify logical fallacies is essential, given
that these models frequently generate such flaws in their own generated reasoning. With appropriate
design, this capability would enable self-revision to enhance the logical coherence of LLM outputs.
(Saunders et al., 2022) Furthermore, as online information, including political discourse (Luettgau
et al., 2025) and widespread misinformation, is often full of logical fallacies. This shows the need to
incorporate a detection mechanism for ensuring the fidelity of information retrieved and presented
by LLMs. Beyond internal improvement, classifying fallacies could provide users with explicit
explanations detailing why certain information constitutes misinformation, thereby fostering critical
evaluation and preventing unwarranted trust in unsound sources. To address these limitations, this
study proposes a symbolic approach for logical fallacy classification. Our methodology involves
developing rule-based classification mechanisms that consist of stepwise instructions and relational
graphs corresponding to each logical fallacy category presented in the FALLACIES dataset. (Hong
et al., 2024) Subsequently, we conduct comprehensive quantitative and qualitative evaluations to
assess LLM performance when guided by these structured instructions. Our research makes three
key contributions to improving logical fallacy classification in Large Language Models:

1. Development of the Atomic-Instruction-Dataset-for-Logical-Fallacies (AID-LF): We sys-
tematically transform the existing FALLACIES dataset by decomposing complex logical fal-
lacy descriptions into atomic, binary decision steps. Each fallacy is represented as a series of
discrete yes/no questions that can be evaluated independently, accompanied by corresponding
ground truth labels. This structured approach reduces classification complexity while main-
taining comprehensive coverage of logical fallacy characteristics. The complete dataset is
organized in JSON format for seamless integration with existing LLM pipelines'. The notion
of atomic instruction derives from the principles of decision procedures. These are algo-
rithms characterized by their guaranteed termination with a binary outcome, either satisfiable
or unsatisfiable, for any given formula.(Kroening & Strichman, 2016)

2. Comprehensive Multi-Model Evaluation: We conduct extensive empirical evaluation across
multiple state-of-the-art language models, including Claude-Sonnet-4, ChatGPT-40, ChatGPT-
04-mini, and Gemini-2.5-Flash. Our systematic comparison documents performance im-
provements against established baselines, with performance increases of 20.7% for Claude-
Sonnet-4, 3.4% for both ChatGPT-40 and ChatGPT-04-mini, and 8.7% for Gemini-2.5-Flash.

3. Prolog-Based Relational Graph Integration: We develop and integrate Prolog-based re-
lational graphs that model the structural connections between related logical fallacies. This

1. Our data is publicly available at https://github.com/olivianxai/AID-LF
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graph-based approach requires models to systematically examine interconnected fallacies be-
fore making final classifications, leading to more informed and accurate decisions. Our results
demonstrate that structured rule-based guidance enables LLMs to achieve substantial perfor-
mance improvements in the challenging domain of logical fallacy identification.

2. Related Work

Large Language Models in Logical Fallacy Detection and Classification: Recent research has
explored various approaches to enhancing logical reasoning capabilities in Large Language Mod-
els, with particular attention to fallacy detection and self-correction mechanisms. Kumar et al.
demonstrated that structuring LLM reasoning processes to optimize self-evaluation and correction
can yield improved performance on logic-based tasks in mathematics and code generation. (Ku-
mar et al., 2024) While their findings suggest promising potential for self-reflective reasoning, their
investigation did not extend to testing logical fallacy detection nor classification within logical rea-
soning contexts. Building upon similar self-sustaining methodologies, Jeong et al. developed a
structured approach to mitigate logical fallacies in LLM outputs by systematically incorporating
counterarguments, explanations, and objectives into model prompts. (Jeong et al., 2025) Although
this technique demonstrates effectiveness in reducing fallacious reasoning, it requires extensive
manual curation of counterarguments, explanations, and objectives for individual statements, thus
limiting its scalability and generalizability across diverse reasoning contexts. Jin et al. advanced the
field by creating a benchmark dataset focusing on climate-related fallacies and demonstrating that
structure-aware classifiers for logical fallacy detection outperform existing LLLM approaches. (Jin
et al., 2022) However, their research failed to consider the similarities and disparities between dif-
ferent logical fallacies, leaving this potentially valuable application unexplored. Lei et al. proposed
an alternative structured approach utilizing logical structure trees to represent argumentative frame-
works. (Lei & Huang, 2024) Their methodology showed that providing LLMs with explicit logical
tree structures with logical connective words as non-terminal nodes, while textual arguments as
terminal nodes, significantly improved fallacy detection and classification performance. However,
their approach primarily relies on connective word analysis, which may be insufficient for detecting
certain categories of logical fallacies that manifest through more subtle, structural, or semantic pat-
terns. Most comprehensively, Hong et al. conducted extensive evaluations of LLM detection and
classification capabilities using their FALLACIES dataset, which encompasses 232 distinct fallacy
classes organized under formal and informal categories. (Hong et al., 2024) Despite the breadth of
their evaluation, the best-performing model achieved only approximately 34% average accuracy, in-
dicating substantial room for improvement in current approaches. These existing works collectively
highlight both the importance of structured approaches to logical reasoning in LLLMs and the signif-
icant challenges that remain in achieving reliable fallacy detection and classification capabilities.
Instruction Following in Large Language Models: In addition, current work on LL.M instruction-

following capabilities has revealed both the strengths and limitations of these models. Qin et
al. introduced a novel metric, Decomposed Requirements Following Ratio (DRFR), to quantita-
tively measure LLM instruction-following performance on a benchmark of 500 diverse instruc-
tions. DRFR involves decomposing each instruction within the benchmark into atomic criteria.
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LLMs’ response to each question is thus evaluated on how many of the atomic criteria it satisfies,
and the overall performance of the LLM on the benchmark is the number of criteria it has satisfied
across all questions divided by the total number of atomic criteria in the benchmark. This evalua-
tion method is a good representation of LLM performance on questions that involve multiple tasks;
however, for questions centered on a single task that the LLM must handle, such as choosing one
logical fallacy that fits a given example, assigning a score representing LLM performance requires
different methods. Furthermore, although InFoBench’s decomposed criteria advance interpretabil-
ity, many of these ‘atomic’ checks are too vague. For example, one of the atomic criteria mentioned
in InfoBench is ‘Is the generated questionnaire designed for hotel guests?” This prompt offers little
instruction on how an LLM should identify guest-specific content, thus undermining the validity of
the DRFR. (Qin et al., 2024)

White et al. proposed an entirely new, contamination-free benchmark, LiveBench. (White
et al., 2024) Evaluating different LLMs such as Claude-Sonnet-3.5, GPT-40, and Deepseek Coder
v2. The instruction following capabilities of LLMs were found to have the highest performance out
of all the tasks tested, at around 70% accuracy. The impressive instruction following capabilities of
LLMs give us the foundation for providing stepwise instructions to assist LLMs in logical fallacy
classification.

Jiang et al. introduced FollowBench, a multi-level, fine-grained constraints benchmark that
evaluates LLMs by incrementally adding one atomic constraint at each level. (Jiang et al., 2023)
They found that incrementally adding constraints reduced instruction-following performance, with
the most advanced models reliably following instructions contain only around three constraints.
Their findings demonstrate that simpler, atomic instructions may yield more consistent results.

Prompting Best Practices for Large Language Models: Kim et al. tested various methods
to prompt LL.Ms on the same task. Expert-role descriptions, longer and more detailed instructions,
step-by-step instructions, and providing examples (multi-shot prompting) were all found to improve
LLMs’ performance. (Kim et al., 2023) In support of the role-based approach, Kong et al. found
that role-play prompting (e.g., "you are an ...") improved LLM performance in comparison to stan-
dard zero-shot prompting. (Kong et al., 2024) Zamfirescu-Pereira et al. showed that writing prompts
with demarcations, rephrasing the prompts in the format of code (such as Jinja), and repeating in-
structions can improve LLM outputs. (Zamfirescu-Pereira et al., 2023) Prior work also cautions that
LLMs often misinterpret negated instructions and can even suffer performance drops when prompts
are phrased negatively. (Jang et al., 2023; Li et al., 2023; Lou et al., 2024; Mishra et al., 2021) In
this study, we adopt all prompting best practices identified in the literature review to optimize output
quality.

Logical Reasoning and Prolog: Prolog, standing for "PROgramming in LOGic," was devel-
oped as a language for the logic programming paradigm. Its declarative nature and powerful built-in
inference engine quickly established it as a primary tool for symbolic Al research. Historically,
Prolog has been instrumental in the development of Expert Systems and Knowledge Representation
(Bratko, 1990; Clark et al., 1980; Hayes-Roth et al., 1983) and in systems for Automated Reasoning.
(Lund & Villadsen, 2022)

While other paradigms have since dominated the field, a renewed interest in logical program-
ming has emerged with the rise of Neuro-symbolic Al. (Belle, 2025; Chen, 2025; Colelough &
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Figure 1. Visualization of Stepwise Instructions Dataset Pipeline. This figure illustrates the two-phase
pipeline used to create the Atomic-Instruction-Dataset-for-Logical-Fallacies (AID-LF). Phase 1 involved us-
ing large language models (LLMs) to decompose the descriptions and logical forms of 232 fallacies into
atomic, actionable steps. Phase 2 consisted of a rigorous human annotation process, where authors performed
three rounds of verification and cross-checking. The annotations ensured that the instructions accurately re-
flected the original fallacy definitions, minimized redundancy, and provided complete coverage.

Regli, 2025; Garcez & Lamb, 2023; Vakharia et al., 2024; Saccon et al., 2024; Tan et al., 2024)
This modern approach seeks to combine the strengths of neural networks with the formal, verifiable
reasoning of symbolic methods. This revival stems from the paradigm’s inherent ability to pro-
vide rule-based constraints and symbolic grounding, which can be integrated with neural network
models. This integration offers a path toward verifiable Al systems and is particularly effective in
addressing the problem of hallucinations.

In this context, Prolog is uniquely suited for our work. Its declarative syntax is ideal for defining
and querying the complex relationships between different logical fallacies. By leveraging these core
features, we can create a robust and efficient query system for related logical fallacies.

3. Methodology

3.1 Stepwise Instructions Dataset Construction

To develop our structured stepwise instructions dataset, we extracted logical fallacies and their cor-
responding descriptions from the FALLACIES dataset. (Hong et al., 2024) We then transformed
these descriptions into systematic, step-by-step instructions by decomposing them into atomic bi-
nary questions that can be answered with "yes" or "no" responses. Afterwards, the authors acted as
human annotators and performed three rounds of annotations to verify and polish each instruction,
add ground-truths, and operations references to provide LLMs with comparative benchmarks dur-
ing the classification process. The procedural steps, ground truths, and operations references were
consolidated into a structured JSON file designated as "final_instructions.json", which we will refer
to as the "stepwise instructions” throughout this paper. In Appendix B, we include an example of
"Accent Fallacy" before and after the transformation.
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Figure 2. Baseline Establishment Process. For the baseline, large language models (LLMs) were provided
with the descriptions and logical forms of all 232 fallacies, along with a statement for classification. The
LLMs were instructed to select the most appropriate fallacy.

3.2 Baseline Establishment

We established our baseline by providing LLMs with the descriptions and logical forms of all logical
fallacies, then testing their ability to identify the fallacy present in a given test statement. The
example statements were curated by combining the first example listed for each of the 232 fallacies
in the FALLACIES database, and these same statements were used across all approaches. Our
evaluation employed three state-of-the-art language models: Claude-Sonnet-4, (Anthropic Safety
& Research Team, 2025) ChatGPT-40, (Achiam et al., 2023) and Gemini-2.5-Flash. (Team et al.,
2023)

3.3 Three-tiered Hierarchical Classification

While Hong et al. established a hierarchy of logical fallacies, they did not explore hierarchical
classification methodologies. (Hong et al., 2024) To investigate whether such a hierarchical orga-
nization could enhance logical fallacy classification performance, we implemented a three-tiered
hierarchical classification approach. At the first tier, LLMs determine whether a given statement
contains a formal or informal logical fallacy, with explicit definitions of both categories provided
as context. At the second tier, classification proceeds based on the initial determination. State-
ments classified as formal fallacies are further categorized into four subcategories: "Proposition,"
"Quantification,"” "Syllogism," and "Probability." Those identified as informal fallacies are classi-
fied among five subcategories: "Ambiguity," "Inconsistency," "Irrelevance,” "Insufficiency,” and
"Inappropriate Presumption.” Complete definitions for all second-tier categories are provided to the
models. Models are also permitted to revise their initial classification if deemed necessary. At the
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Figure 3. Three-tiered Hierarchical Classification of Logical Fallacy. The hierarchical classification process
proceeded in three distinct levels. Level 1: The LLMs were initially prompted to classify a statement as
either a Formal or Informal Fallacy, using only the definitions of these two categories. Level 2: Based on the
first-level classification, the models were then supplied with definitions for the corresponding subcategories
(e.g., "Proposition," "Quantification,” "Syllogism" for formal fallacies, or "Ambiguity," "Inconsistency," "Ir-
relevance," "Insufficiency," "Inappropriate Presumption” for informal fallacies). The LLMs were given the
option to revise their initial classification. Level 3: For the final, most granular classification, the models
were prompted to select the specific fallacy from a detailed list that included each fallacy’s description and
logical form. At this stage, they could also revise any prior decisions.

third tier, LLMs perform the most granular classification based on their previous selections, again
with comprehensive definitions supplied. Models retain the option to modify their prior classifica-
tions at this stage as well.

3.4 Stepwise Instructed Classification

To evaluate the effectiveness of our stepwise instructional approach, we provided the stepwise in-
structions to the LLMs and requested classification of logical fallacies within test statements by
following the prescribed steps and comparing results against the established ground truths. Fol-
lowing prompt-engineering best practices, each prompt was initiated with an expert-role descriptor.
(Kim et al., 2023; Kong et al., 2024) Subsequently, prompts were structured using explicit headings
and labels that delineated the knowledge-base architecture, classification procedures, and critical
requirements. (White et al., 2023) The critical requirements incorporated iterative instructions to
emphasize the necessity of strict compliance with the specified output format. (Zamfirescu-Pereira
et al., 2023) To enhance prompt effectiveness, example text and desired LLM output formats were
enclosed within explicit delimiters. (Chen et al., 2025) Finally, to ensure consistency across all
evaluations, this structured prompt framework was uniformly applied to all models tested.

3.5 Instruction-Guided Classification with Relational Graphs

Our relational graphs were implemented with Prolog. Although Prolog was not explicitly designed
for knowledge representation (KR), its capabilities are sufficient for establishing the necessary re-
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Figure 4. Stepwise Instruction Classification Process. The LLMs were supplied with the stepwise instruction
dataset and the statement to be classified. They were instructed to execute the steps for each fallacy and return
the first fallacy for which all steps matched the ground truth.

lationships between related logical fallacies, making it an appropriate choice for this study. The
selection of Prolog is strategically motivated by its potential to form the basis for future work,
enabling the integration of detailed, Prolog-based representations for each fallacy and facilitating
the automatic generation of classification deductions and proofs. Our baseline results revealed sig-
nificant overlap among several logical fallacies. We observed that LLMs frequently misclassified
"Contextomy" as the "Accent Fallacy", and vice versa. This confusion is notable because the two
fallacies have distinct definitions: "Contextomy" manipulates meaning through altering the context,
while "Accent Fallacy" does so by applying emphasis on specific words. The models’ inability to
recognize this key difference indicates a potential weakness that could be addressed by developing
more precise classification frameworks. To capture these intricate inter-fallacy relationships, we
developed relational graphs using Prolog, a symbolic programming language well-suited for logical
reasoning tasks, based on the misclassification results from our baseline experiments.

To evaluate the combined efficacy of stepwise instructions and symbolic relational graphs, we
implemented a comprehensive three-phase classification protocol. We provided both the stepwise
instructions as well as the relational graphs to the LLMs and requested classification of logical
fallacies within the test statements. Before giving a final classification, LLMs were instructed by
the prompt to complete a three-step process. Step 1 requires LLMs to read the stepwise instruction
file, execute each step specified in the fallacy’s instruction set, and compare the execution results
to the "ground_truths" and find initial matches. Step 2 requires LLMs to read the relational graphs
and, for every initial match identified in Step 1, find all related fallacies from the relational graphs.
Then, LLMs are requested to return to the stepwise instructions and execute all the step-by-step
analysis similarly to Step 1, and document all possible matches. Step 3 requires LLMs to compare
all results from Steps 1 and 2 and select the fallacy that best fits the statement. The decision is based
on the strength of the match with ground truths, the quality of the step-by-step analysis, and the
logical consistency across all steps. The results of these approaches are presented and analyzed in
the subsequent sections.
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Figure 5. Instruction-Guided Classification with Relational Graphs

It should be noted that we also included ChatGPT-04-mini in our experiments using the "Step-
wise Instructed Classification" and "Symbolic Relational Graphs Assisted Classification" methods.
This was done to rule out the possibility that the superior performance of Claude-Sonnet-4 was due
to data contamination, given that ChatGPT-40 was released approximately one year before the other
models. As the performance of ChatGPT-40 and ChatGPT-04-mini was nearly identical, we opted
to only include the results from the ChatGPT-40 experiments for clarity and brevity.

4. Results
4.1 Baseline Results

Claude-Sonnet-4, Gemini-2.5-Flash, and ChatGPT-40 achieved comparable performance in the
baseline evaluation, achieving 42.2%, 43.5%, and 44.0% accuracy, respectively. These baseline
results align with the findings reported by Hong et al. (Hong et al., 2024)

4.2 Three-tiered Hierarchical Classification Results

Given the hierarchical structure of this classification methodology, a classification was considered
correct only if the LLMs identified the correct label across all three levels. The three models demon-
strated comparable performance under the hierarchical classification approach, with Claude-Sonnet-
4 and ChatGPT-40 both achieving 25.9% accuracy, while Gemini-2.5-Flash achieved 24.6% accu-
racy. Notably, all three LLMs exhibited diminished performance compared to the baseline when
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employing the hierarchical classification approach. Upon analyzing the results, we identified that
the majority of classification errors occurred at the second hierarchical level. Despite the struc-
tural provision allowing LLMs to revise their previous classifications, such revisions occurred in-
frequently. Instead, models typically maintained consistency with their prior classifications and
proceeded to select options that aligned with their previous determinations. Consequently, when
an incorrect classification was made at the second level, models rarely recovered to achieve overall
classification accuracy.

4.3 Stepwise Instruction Results

The stepwise instruction results present the most compelling findings. Claude-Sonnet-4 demon-
strated superior performance compared to the baseline, achieving 55.2% accuracy, while Gemini-
2.5-Flash exhibited diminished performance of only 39.2% accuracy, and ChatGPT-40 achieved the
lowest performance, which is 36.6% accuracy, among the three models.

4.4 Instruction-Guided Classification with Relational Graphs Results

Across all models, the Instruction-Guided Classification with Relational Graphs approach yielded
the highest performance. Claude-Sonnet-4 notably outperformed the other models with an accu-
racy of 62.9%, while Gemini-2.5-Flash achieved 52.2%. Although it showed the least performance
improvement, ChatGPT-4o still reached an accuracy of 47.8%.

Evaluation Type Claude-Sonnet-4 ChatGPT-40 Accu- | Gemini-2.5-Flash
Accuracy racy Accuracy

Baseline Classification 42.2% 44.0% 43.5%

Hierarchical Classification | 25.9% 25.9% 24.6%

Stepwise Classification 55.2% 36.6% 39.2%

Enhanced Classification 62.9% 47.8% 52.2%

Table 1. Comparison of Accuracy Across Models and Classification Approaches

5. Discussion

Methodological Shortcomings In our Three-tiered Hierarchical Classification method, most errors
occurred at the second level. LLMs rarely corrected these errors, instead maintaining consistency
with their initial, incorrect classifications. This lack of self-correction meant that a mistake at the
second level almost always led to an incorrect final classification.

LLM Interpretation and Misclassification Below are the most notable errors and their causes
from the experiments:

e Speaker Intention: Across all models (ChatGPT-40, Claude-Sonnet-4, Gemini-2.5-Flash, and
ChatGPT-04-mini), we observed a tendency to misinterpret speaker roles in multi-person in-
teractions, leading to incorrect classifications. For example, in a "fallacy of accomplishment"

10
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Figure 6. Performance Comparison Across Models and Different Approaches. The Stepwise + Relational
Graphs method (dark green) achieved the highest accuracy. Light green shows the percentage of misclassified
statements where the correct label was the second-best prediction. Other colors represent different approaches
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Among the misclassified statements, Claude-Sonnet-4’s

top three misclassifications are "Hasty Generalization", "Complex Question Fallacy", and "Non Sequitur".
ChatGPT-40’s top three misclassifications are "Ad Hominem Abusive", "Fallacy of Undistributed Middle",
"Appeal to Emotion". Gemini-2.5-Flash’s top three misclassifications are "Appeal to Emotion", "Alleged
Certainty", and "Hasty Generalization".

case, LLMs mistakenly identified the subject of the argument as the arguer, resulting in a wrong
classification.
e Ad Hominem Fallacies: The inability to distinguish between neutral, satirical, or ironic state-
ments and genuine attacks led to high misclassification rates for "Ad Hominem" fallacies, par-
ticularly for Claude-Sonnet-4.

11
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e Hallucination: Despite using optimized prompts to minimize human error, models occasionally
hallucinated. For instance, ChatGPT-4o correctly identified a "False Conversion" fallacy but
labeled it with the non-existent term "Fallacy of Conversion."

Ultimately, these misclassifications highlight that LLMs still face significant challenges when per-
forming complex logical reasoning tasks.

Instruction-Guided Classification with Relational Graphs Our analysis of the Instruction-
Guided Classification with Relational Graphs method revealed that integrating stepwise instructions
with relational graphs provides models with clearer patterns and opportunities for reconsideration.
This approach improved performance, with the correct classification frequently appearing as the
second-ranked option among misclassified statements (Claude-Sonnet-4: 39%, ChatGPT-40: 20%,
Gemini-2.5-Flash: 19%).

Overall Performance and Limitations The top-performing model achieved only 62% accu-
racy, highlighting that LLMs still struggle with complex logical reasoning. A primary cause is their
inconsistent adherence to instructions. While prompts instructed models to perform verification
checks for every logical fallacy, Claude-Sonnet-4, for example, admitted its initial classifications
were often based on intuitive pattern recognition rather than systematic instruction execution. This
non-compliance makes subsequent correction unlikely. Further analysis showed that while decom-
posing tasks into individual queries could slightly improve accuracy (from 54.70% to 66.67% on a
27-example subset), this method proved to be prohibitively resource-intensive and time-consuming,
taking two consecutive days for a small sample due to API throttling.

Claude-Sonnet-4 Demonstrated Consistently Superior Performance Across the "Three-tiered
Hierarchical Classification," "Stepwise Instructed Classification," and "Instruction-Guided Classi-
fication with Relational Graphs" methodologies, Claude-Sonnet-4 consistently outperformed both
Gemini-2.5-Flash and ChatGPT-4o0, occasionally by substantial margins. In contrast, ChatGPT-40
demonstrated comparatively weaker performance in both the "Stepwise Classification" and "En-
hanced Classification" approaches. We initially hypothesized that this performance difference might
be attributed to ChatGPT-40 being an earlier-generation model, released approximately one year
prior to the other two models. To test this hypothesis, we conducted identical evaluations using
ChatGPT-04-mini, which yielded results nearly identical to those of ChatGPT-40. These findings
suggest that Claude-Sonnet-4 possesses superior logical reasoning capabilities, making it a more
suitable candidate for tasks that require advanced logical planning and comprehension.

The Logical Fallacy Entrapment Across all methodological approaches, the LLMs demon-
strated susceptibility to systematic classification errors, which we term the "Logical Fallacy Entrap-
ment". Our analysis suggests that each model possesses inherent classificatory biases that consis-
tently direct initial fallacy identification toward particular categories. Given the design constraints of
our approaches, when initial classifications deviate substantially from the correct labels, subsequent
correction becomes virtually impossible. This limitation is particularly evident in the hierarchi-
cal design employed in the "Hierarchical Classification" approach, which consequently yielded the
poorest performance outcomes across all evaluation approaches. Furthermore, the models demon-
strated unique tendencies in fallacy classification. Claude-Sonnet-4 exhibited a strong preference
for Hasty Generalization and the Complex Question Fallacy, which contrasted with ChatGPT-40’s
inclination toward Ad Hominem Abusive and the Fallacy of the Undistributed Middle. Gemini-
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2.5-Flash displayed a different pattern, predominantly choosing Appeal to Emotion and Alleged
Certainty.

The Paradoxical Effect of Stepwise Instructions and the Corrective Role of Relational
Graphs The most controversial findings in our study emerge from the "Stepwise Instructed Classifi-
cation" approach, where Gemini-2.5-Flash and ChatGPT-40 demonstrated diminished performance
relative to the baseline, while Claude-Sonnet-4 exhibited improved performance. Upon analyzing
these results, we hypothesize that this divergence may be attributed to Claude-Sonnet-4 displaying
the least inherent classification bias among all evaluated models and that Claude-Sonnet-4 has bet-
ter instruction following capabilities. (White et al., 2024) Consequently, Claude-Sonnet-4 typically
generates more varied initial classifications, thereby increasing the probability of avoiding the sys-
tematic classification errors discussed previously. Notably, all three models demonstrated enhanced
performance when provided with both stepwise instructions and relational graphs. These results in-
dicate that by constraining the classification space and compelling LLMs to conduct more thorough
analysis, the models achieve superior outcomes even in logically demanding tasks.

6. Limitations

Prompting Limitation We maintained consistent prompt structures across all models within each
methodological approach while adhering to established prompting best practices; however, response
variability persisted across models. Gemini-2.5-Flash occasionally required multiple prompt itera-
tions to generate valid outputs, frequently producing error messages indicating an inability to access
local files or missing classification statements. Moreover, due to inconsistent output formatting from
Gemini-2.5-Flash, manual information extraction and post-processing were required. Similarly,
when providing Claude-Sonnet-4 with both stepwise instructions and relational graphs, multi-turn
prompting sessions were often required to ensure complete adherence to the specified procedural
guidelines.

Dataset Limitation Our reliance on the FALLACIES dataset resulted in the inheritance of its
limitations, including taxonomic overlaps that complicate accurate classification of specific state-
ments. Several logical fallacies exhibit hierarchical relationships where broader categories encom-
pass more specific subcategories. For instance, "Appeal to Emotion" serves as an umbrella category
that subsumes more specific fallacies such as "Appeal to Anger" and "Appeal to Fear," given that
anger and fear constitute emotional states. Similarly, "Non Sequitur" encompasses various sub-
categories of logical disconnection. An additional inherent limitation within the dataset stems from
definitional ambiguity, where multiple logical fallacy definitions may legitimately apply to the same
statements. This classificatory ambiguity renders certain statements inherently challenging to cate-
gorize, presenting difficulties even for human annotators. While our findings provide initial insights,
we acknowledge the limitation that drawing conclusions on LLMs’ capabilities in logical fallacy
classification from a single data source may not be sufficient. A more comprehensive evaluation
should include a broader range of data sources.

Data Processing limitation An additional limitation concerns the opacity of how LLMs process
and utilize the supplementary files we provided, as these internal mechanisms remain inaccessible
for examination. Based on our observations, an optimal approach would involve directing LLMs to
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systematically evaluate each logical fallacy individually to identify all potential matches, followed
by a secondary evaluation phase focusing on the narrowed candidate set. However, due to temporal
and computational resource constraints, we were unable to implement this iterative approach and
instead relied on zero-shot classification methodologies where LLMs managed the entire process
autonomously.

Relational Graph Construction Bias Relational graphs were constructed based on misclassi-
fication patterns observed in the baseline results. The underlying hypothesis posits that when LL.Ms
systematically misclassify logical fallacy A as logical fallacy B, these fallacies likely share sig-
nificant conceptual or structural similarities. However, the baseline statements represent a limited
sample that does not encompass all possible classificatory scenarios, resulting in incomplete capture
of such relationships within our Prolog relational graphs.

7. Future Work

The outcomes of this preliminary investigation suggest several prospective directions for future
research.

Cross-Model and Cross-Dataset Generalizability Assessment The experiments conducted
in this initial phase were restricted to closed-source proprietary language models (LMs) and the
singular FALLACIES dataset. (Hong et al., 2024) To rigorously assess the generalizability of our
methodology, future work will integrate a selection of open-source LMs, such as Vicuna and Llama.
Furthermore, we intend to apply our proposed methodology to additional logical fallacy datasets,
including the logical-fallacy dataset. (Jin et al., 2022)

Fine-tune LMs for Atomic Instruction Following Despite the strong performance reported
in the literature concerning Large Language Model (LLM) instruction-following capabilities, we
faced persistent challenges in strictly enforcing adherence to our atomic instructions. Therefore, a
critical future direction involves fine-tuning selected LMs specifically to improve their capability in
following atomic instructions.

Enhancement in Knowledge Representation and Graphs In this preliminary effort, the re-
lational graph is only used to indicate the common confusion or misclassification between logical
fallacies. To facilitate more comprehensive comparison and robust classification, a planned en-
hancement involves integrating fallacy-specific distinguishing traits into the Prolog-based knowl-
edge graph. This expansion is designed to move beyond merely noting fallacy relationships by
integrating step-by-step comparison knowledge for similar fallacies. For example, under the en-
hanced version of our knowledge graph, distinguishing between Accent Fallacy and Contextomy
hinges on identifying whether the manipulation targets a specific word or the broader contextual
framing, enabling Large Language Models (LLMs) to effectively resolve these nuanced cases.

Explanation Generation for Classification A significant advantage of leveraging LLMs is
their capacity for generating coherent explanations. Therefore, another key research trajectory is
the development of a system that combines the intermediate outputs from each step in the stepwise
instructional reasoning chain to automatically generate an explanation of why a given statement is
classified as logical fallacy A rather than logical fallacy B.

14



FoLLow MY LEAD: LOGICAL FALLACY CLASSIFICATION WITH KNOWLEDGE-AUGMENTED LLMS

8. Conclusion

In this research, we sought to answer the question of whether the provision of a structured se-
quence of stepwise, atomic instructions could induce more deliberate, effortful, and logical reason-
ing in LLMs. We evaluated four distinct methodological approaches for engaging Claude-Sonnet-4,
Gemini-2.5-Flash, and ChatGPT-4o0 in logical fallacy classification tasks. Our findings demonstrate
that the integration of stepwise instructions with Prolog relational graphs effectively constrains the
classification space by narrowing the candidate fallacy set and facilitating model reconsideration of
initial decisions, thereby yielding improved performance outcomes across all models. However, we
also acknowledge that our methodologies are far from perfect and suffer from several limitations,
such as prompting, dataset, data processing, and graph construction. A few valuable future direc-
tions include expanding the experimental scope by testing the methodology across diverse open-
source Language Models and additional logical fallacy datasets; enhancing instruction adherence
through fine-tuning LMs specifically for strict atomic instruction following; enriching the knowl-
edge representation by incorporating fallacy-specific traits into the Prolog-based relational graph;
and finally, leveraging the LMs’ capabilities to generate detailed explanations for classification out-
comes based on the stepwise reasoning chain.
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Appendix A. Prompts

A.1 Prompt for Baseline Establishment

If you have to choose one classification among all the level 3 labels, which one will you pick for
this statement? Below are all the level 3 labels and their descriptions.

A.2 Prompts Employed in Three-Tiered Hierarchical Classification
A.2.1 First Tier Classification

I will ask you to classify the specific type of logical fallacies in the example. You will get a dif-
ferent reward for getting the correct answer on different levels. For example, if you can get the
correct classification on level 1, you get reward 1; otherwise, you get 0. If you can get the correct
classification on level 1, you move on to the next level, and if you can get the correct classification
on level 2, you get reward 2, if you can get the correct classification on level 3, you get reward 3,
and so on. The first level of classification challenge is to classify whether the logical fallacy in the
statement is formal or informal. The definition of a formal fallacy means that there is an error in
the argument’s form. In contrast, an informal fallacy means the arguments are logically unsound for
a lack of well-grounded premises. Now classify the below statement and output the results in this
format: "level_1_results:" in all lower cases with no "fallacy". Only output the level 2 classification,
no explanations.

A.2.2 Second Tier Classification

Now you are moved to level 2 of classification, where you need to further classify the fallacy. Under
formal fallacy, there are Proposition(Errors in dealing with the logical relations holding between
propositions.), Quantification Fallacy (Errors in dealing with the quantifiers), Syllogism Fallacy
(Errors in the syllogisms of deductive reasoning.), Probability Fallacy (Errors in dealing with prob-
ability.). Under informal fallacy, there are Ambiguity Fallacy (Errors due to linguistic ambiguity
or vagueness of terms), Inconsistency Fallacy (Self-contradiction and inconsistency occur). Irrele-
vance Fallacy (The premises are irrelevant to the conclusion.), Insufficiency Fallacy (The premises
are insufficient or weak to support the conclusion.), and Inappropriate Presumption Fallacy (An in-
appropriate presumption is explicitly or implicitly introduced.), which one do you think it would
fall under? You can also go back and change your previous classification. Output the results in this
format: "level_2_results:" in all lower cases with no "fallacy". Only output the level 2 classifica-
tion, no explanations. Only output a classification from the level 2 fallacy list provided in the format
requested.

A.2.3 Sample Third-Tier Classification Prompt within the Syllogism Category

Moving on to level three, under Syllogism, there are Fallacy of the Undistributed Middle (A formal
fallacy in a categorical syllogism where the middle term, or the term that does not appear in the
conclusion, is not distributed to the other two terms.), Exclusive Premises (A standard form cate-
gorical syllogism that has two negative premises either in the form of “no X are Y” or “some X are
not Y”), Fallacy of Four Terms (This fallacy occurs in a categorical syllogism when the syllogism
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has four terms rather than the requisite three.), Illicit Substitution of Identicals (A fallacy due to
confusing the knowing of a thing (extension) with the knowing of it under all its various names
or descriptions (intension).), Illicit Minor (Any form of a categorical syllogism in which the minor
term is distributed in the conclusion, but not in the minor premise.), Illicit Major (Any form of a
categorical syllogism in which the major term is distributed in the conclusion, but not in the major
premise.), Negative Conclusion from Affirmative Premises (The conclusion of a standard form cat-
egorical syllogism is negative, but both of the premises are positive.), Affirmative Conclusion from
a Negative Premise (The conclusion of a standard form categorical syllogism is affirmative, but at
least one of the premises is negative). Which one do you think it should fall under? You can also go
back and change your previous classification. Output the results in this format: "level_3_results:"
in all lower cases with no "fallacy". Only output the level 3 classification, no explanations. Only
output a classification from the level 3 fallacy list provided in the format requested.

A.3 Prompt for Stepwise Instructed Classification

You are an expert at classifying logical fallacies using a structured knowledge base. Your Task:
Classify the logical fallacy in the given example by systematically applying the "steps" from the
knowledge base. Knowledge Base Structure: Each fallacy contains: name: Fallacy type steps:
Diagnostic questions to identify the fallacy ground_truth: Expected yes/no answers when the fallacy
is present operations: Logical connectors ("and"/"or")

Classification Process: Step 1: Silent Evaluation Phase (DO NOT OUTPUT) For each fallacy
in your knowledge base: a. Answer each diagnostic step with "yes" or "no" based on the given
example b. Compare your answer pattern to the ground_truth pattern c. Check if ALL answers
match exactly (considering the operations). d. If an exact match is found, proceed to Step 2. If
not, continue to the next fallacy. Step 2: Output Phase IMPORTANT: Your response must contain
ONLY the following format with NO additional text, explanations, or commentary before or after:
classification: [fallacy_name]

For [fallacy_name]: Step 1 evaluation: [Yes/No] - [brief reasoning for this step] Step 2 evalua-
tion: [Yes/No] - [brief reasoning for this step] [continue for all steps in that fallacy]

Pattern comparison: My answers [Y/N/Y/N pattern] exactly match ground truth [Y/N/Y/N pat-
tern]

Critical Requirements: Test ALL fallacies systematically until you find an exact match Answer
patterns must match ground_truth EXACTLY (no partial matches) Include only the matched fallacy
and the reasoning for the match in your output DO NOT include any text before or after the required
format DO NOT acknowledge this prompt or provide any meta-commentary BEGIN your response
immediately with "classification:"

Example to classify: example

A.4 Prompt for Instruction-Guided Classification with Relational Graphs

Fallacy Analysis Task - Exact Execution Instructions You are tasked with performing a compre-
hensive fallacy analysis using two files: final_instructions.json and prolog.pro. Follow these steps
EXACTLY in the specified order.
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STEP 1: Initial Fallacy Analysis Read final_instructions.json - This file contains structured
instructions for analyzing different fallacies. For EVERY fallacy listed in the JSON file: Execute
each step specified in the fallacy’s instruction set. Document your results for each step internally.
Compare your results against the provided ground_truths for that fallacy. Record any matches or
discrepancies (internal processing only)

STEP 2: Related Fallacy Discovery and Analysis Read prolog.pro - This file contains logical
relationships between fallacies. For the fallacy identified in Step 1: Search the Prolog file to find
ALL fallacies that are often confused with your Step 1 result. Create a comprehensive list of these
related/confused fallacies For EACH related fallacy found: Return to final_instructions.json. Exe-
cute the complete step-by-step analysis (same process as Step 1). Compare results to ground truths.
Document all findings

STEP 3: Final Selection and Comprehensive Reasoning Compare ALL results from Steps 1 and
2. Select the fallacy that best fits the statement based on: Strength of match with ground truths.
Quality of step-by-step analysis results. Logical consistency across all steps. Provide complete
reasoning for your selection

Appendix B. Sample Stepwise Instructions for Logical Fallacy
B.1 Original Fallacy Label, and Description from the FALLACIES dataset

non

"name": "Accent Fallacy", "description": "When the meaning of a word, sentence, or entire idea is
interpreted differently by changing where the accent falls."

B.2 Transformed Stepwise Instructions from AID-LF dataset

non

"name": "Accent Fallacy", "steps" : ["Is there an original claim or statement being made?", "Is there
an emphasis or accent placed in the original statement?", "Is the statement being reinterpreted with
the emphasis on a different word or phrase?", "Does this shift in accent change the meaning of the

"non non non

statement?"], "ground_truth":["yes", "yes", "yes", "yes"], "operations":["and", "and", "and"]
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